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Abstract—The problem of distributed learning and channel in each transmission slot (see FEig.1). Under sensing con-
access is considered in a cognitive network with multiple sec- straints, it is thus beneficial for the secondary users to select
ondary users. The availability statistics of the channels are .,ann6|s with higher mean availability, i.e., channels which are

initially unknown to the secondary users and are estimated using | likelv to b ied by th ; H .
sensing decisions. There is no explicit information exchange or ess likely 1o be occupied by the primary users. HOWever, in

prior agreement among the secondary users. We propose po“ciespractlce, the channel avallablllty statistics are a priori unknown
for distributed learning and access which achieve order-optimal to the secondary users.

cognitive system throughput (number of successful secondary  Since the secondary users are required to sense the medium
transmissions) under self play, i.e., when implemented at all the potqre transmission, can these sensing decisions be used to
secondary users. Equivalently, our policies minimize the regret ST ot an .

in distributed leaming and access. We first consider the scenario |€&7N the channel availability statistics? If so, using these
when the number of secondary users is known to the policy, €stimated channel availabilities, can we design channel access
and prove that the total regret is logarithmic in the number of rules which maximize the transmission throughput? Designing
transmission slots. Our distributed learning and access policy provably efficient algorithms to accomplish the above goals
achieves order-optimal regret by comparing to an asymptotic forms the focus of our paper. Such algorithms need to be

lower bound for regret under any uniformly-good learning and fficient. both in t £l . d ch |
access policy. We then consider the case when the number of€M!CIENL DO IN t€rms Or Iearning and channel access.

secondary users is fixed but unknown, and is estimated through ~ For any learning algorithm, there are two important per-
feedback. We propose a policy in this scenario whose asymptotic formance criteria: convergence angyret bounds[[8]. In the

sum regret which grows slightly faster than logarithmic in the  ahove context, we require the estimates to converge to the
number of transmission slots. correct channel availability statistics as the number of available
Index Terms—Cognitive medium access control, multi-armed sensing decisions goes to infinity. A stronger criterion is the
bandits, distributed algorithms, logarithmic regret. regret of a learning algorithm, which measures the speed
of convergence. In our context, the regret is the loss in
secondary throughput due to learning compared with knowing
the channel statistics perfectly. Hence, it is desirable for the
There has been extensive research on cognitive radio rearning algorithms to have small regret. The regret is a finer
work in the past decade to resolve many challenges noeasure of performance of a learning algorithm than the time-
encountered previously in traditional communication networlayeraged throughput since a sub-linear regret (with respect to
(see [2]). One of the main challenges is to achieve coetime) implies optimal average throughput.
istence of heterogeneous users accessing the same part #dditionally, we consider a distributed framework where
the spectrum. In a typical cognitive network, there are twihere is no information exchange or prior agreement among
classes of transmitting users, viz., the primary users who hahe secondary users. This introduces additional challenges:
priority in accessing the spectrum and the secondary users vithoesults in loss of throughput due to collisions among the
opportunistically transmit when the primary user is idle. Thgecondary users, and there is now competition among the
secondary users ammgnitive and can sense the spectrum tsecondary users since they all tend to access channels with
detect the presence of a primary transmission. However, dugher availabilities. It is imperative for the channel access
to resource and hardware constraints, they can sense onlgoéicies to overcome the above challenges. Hence, a distributed
part of the spectrum at any given time. learning and access policy experiences regret both due to
We consider a slotted cognitive system where each séearning of the unknown channel availabilities as well as due
ondary user can sense and access only one orthogonal chatmebllisions under distributed access.
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E, < Extensions of the classical multi-armed bandit problem to

N a Markovian model are considered in [7]. In principle, our
5 Y4 results on distributed learning and access can be similarly
@

extended to a Markovian channel model but this entails more
/ complex estimators and rules for evaluating the exploration-

exploitation tradeoffs of different channels and is a topic of
interest for future investigation.

«@

%econdary User
Primary User=—

B. Related Work

Several results on the multi-armed bandit problem will be
used and generalized to study our problem. Detailed discussion
Fig. 1. Cognitive radio network withi/ = 4 secondary users and = 5 on multi-armed bandits can be found in [§]=][11]. Cognitive
_channels_. A second_ary user is not allowed to transmit if the accessed chgrm@dium access is a topic of extensive research; see [12]
is occupied by a primary user. If more than one secondary user transmits, in . . L. .
the same free channel, then all the transmissions are unsuccessful. or an overview. The connection between cognitive medium

access and the multi-armed bandit problem is exploreld in [13],

where a restless bandit formulation is employed. Under this
order-optimal regret, where the order is in terms of the numbfermulation, indexability is established, the Whittle’s index
of transmission slots. for channel selection is obtained in closed-form, and the

The first policy we propose assumes that the total numbeguivalence between the myopic policy and the Whittle’s
of secondary users in the system is known while our seiidex is established. However, this work assumes known
ond policy relaxes this requirement. Our second policy alghannel availability statistics and does not consider competing
incorporates estimation of the number of secondary users,sicondary users. The work in [14] considers allocation of two
addition to learning of the channel availabilities and designingsers to two channels under Markovian channel model using
distributed access rules. We provide bounds on total regeetpartially observable Markov decision process (POMDP)
experienced by the secondary users under self play, i.e., whietmework. The use of collision feedback information for
implemented at all the secondary users. For the first policy, Wearning, and spatial heterogeneity in spectrum opportunities
prove that the regret is logarithmic, i.€logn) wheren in  were investigated. However, the difference from our work
the number of transmission slots. For the second policy, the ie-that [14] assumes that the availability statistics (transition
gret grows slightly faster than logarithmic, i.€)(f(n)logn), probabilities) of the channels are known to the secondary users
where we can choose any functif(r) satisfyingf(n) — co, while we consider learning of unknown channel statistics.
asn — oo. Hence, we provide performance guarantees for tii¢e works in [15], [16] consider centralized access schemes
proposed distributed learning and access policies. in contrast to distributed access helle,1[17] considers access

A lower bound on regret under any uniformly-good disthrough information exchange and studies the optimal choice
tributed learning policy has been derivedin [4], which is alsef the amount of information to be exchanged given the
logarithmic in the number of transmission slots. Thus, our firsbst of negotiation.[[18] considers access un@elearning
policy (which requires knowledge of the number of secondafgr two users and two channels where users can sense both
users) achieves order-optimal regret. The effects of the numiigs channels simultaneously. The work In1[19] discusses a
of secondary users and the number of channels on regret géiene-theoretic approach to cognitive medium access. In [20],
also explicitly characterized and verified via simulations.  |earning in congestion games through multiplicative updates

To the best of our knowledge, thexploration-exploitation is considered and convergence to weakly-stable equilibria
tradeoff for learning, combined with thecooperation- (which reduces to the pure Nash equilibrium for almost all
competition tradeoffs among multiple users for distributedyames) is proven. However, the work assumes fixed costs (or
medium access have not been sufficiently examined in tbguivalently rewards) in contrast to random rewards here, and
literature before (see Sectidn 1-B for a discussion). Otat the players can fully observe the actions of other players.
analysis in this paper provides important engineering insightsRecently, the work in[[21] considers combinatorial bandits,
towards dealing with learning, competition, and cooperatiaghere a more general model of different (unknown) channel
in practical cognitive systems. availabilities is assumed for different secondary users, and a

Remark: We note some of the shortcomings of our approacthatching algorithm is proposed for jointly allocating users
The i.i.d. modél for primary transmissions is indeed idealisti¢o channels. The algorithm is guaranteed to have logarithmic
and in practice, a Markovian model may be more appropriaigret with respect to number of transmission slots and poly-
[5], [6]. However, the i.i.d. model is a good approximation ihomial storage requirements. A decentralized implementation
the time slots for transmissions are long and/or the primagy the proposed algorithm is proposed but it still requires
traffic is highly bursty. Moreover, the i.i.d. model is not cruciainformation exchange and coordination among the users. In
towards deriving regret bounds for our proposed schemesntrast, we propose algorithms which removes this require-
N ) o ment albeit in a more restrictive setting.

By i.i.d. primary transmission model, we do not mean the presence of .
a single primary user, but rather, this model is used to capture the overaIIIn our recent work[[1], we first formulated the problem
statistical behavior of all the primary users in the system. of decentralized learning and access for multiple secondary




users. We considered two scenarios: one where there is inital Sensing & Channel Models

common information among the secondary users in the form OfLet U > 1 be the number of secondary uBendC > U
pre-all_ocated ranlks, and the other where no S_UCh |nf0rn_1at|8é1 the numbér of orthogonal channels available for slotted
is available. In this paper, we analyze the distributed policy {pnsmissions with a fixed slot width. In each charireid slot
detail and prove that it has logarithmic regret. In addition, WE the primary user transmits i.i.d. with probability- 1z; > 0

also consider the case when the number_of sc_acondary_userlﬁ 'Sther words, lefV; (k) denote the indicator variable if the
unknown, and provide bounds on regret in this scenario. channel is free

Recently, Liu and Zhao [4] proposed a family of distributed _ L
learning and access policies known as time-division fair share Wi(k) = { 0, channeli occupied in slot:
(TDFS), and proved logarithmic regret for these policies. They 1, o.w,
established a lower bound on the growth rate of system regret i,
for a general class of uniformly-good decentralized police@Nd we assume that;(k) "~ B(ui). _
The TDFS policies in[[4] can incorporate any order-optimal Theé mean availability vectop. consists of mean avail-
single-player policy while our work here is based on th@Pilities x; of all channels, i.e., iqu:=[u1,. .., ncl, where
single-user policy proposed if [11]. Another difference is th&ll #i € (0,1) and are distinct.p is initially unknown
in [4], the users orthogonalize via settling at different offsef® 2l the secondary users and is leamtependently over
in their time-sharing schedule, while in our work here, usefén€ using the past sensing decisions without any information
orthogonalize into different channels. Moreover, the TDF&Xchange among the users. We assume that sensing for primary
policies ensure that each player achieves the same tirH@&nSmissions is perfect at all the users. .
average reward while our policies here achieve probabilisticLet 7i,; (k) denote the number of slots where channé
fairness, in the sense that the policies do not discriminate §€nsed ink slots by userj (not necessarily being the sole
tween different users. I [22], the TDFS policies are extend®§cupant of that channel). The sensing variables are obtained
to incorporate imperfect sensing. as follows: at the beginning of each slbt each secondary
Organization & Suggested Reading: Section[Dl deals with userj € U s_elects exactly one chan_n’eé_(} f_or sensing, an_d
the system model, Sectigmlill deals with the special case BNce: obtains the value f; (k), indicating if the channel is
single secondary user and of multiple users with centralizZ§e- USers then recordsk all the sensing decisions O'; each
access which can be directly solved using the classical res&l&annelzc n a vector X7 ;:=[Xi (1), ..., Xi; (T3, (k)]
on multi-armed bandits. In Secti@mllV, we propose distributddeNceJi=1 X7 ; is the collection of sensed decisions for user
learning and access policy with provably logarithmic regrétin & slots for all theC’ channels. o
when the number of secondary users is known. Segfibn yWe assume t_he collision model under which if two or more
considers the scenario when the number of secondary userdSg"s transmit in the same channel then none of the transmis-
unknown. Sectiofil provides a lower bound for distribute§ONS 90 through. At the end of each sloeach usej receives
learning. SectiofiV]l has simulation results for the proposéfknowledgement; (k) on whether its transmission in the
schemes and Sectién VIl concludes the paper. Most of tfl9t was received. Hence, in general, any policy employed by
proofs are found in the Appendix. user; in the (k+1)-th slot, given byp(UZ, X} ;, Z¥) is based
Since SectiofiTll mostly deals with a recap of the classic8l &ll the previous sensing and feedback results.
results on multi-armed bandits, we suggest that an experienced
reader directly jump to Sectidn]V for the main results of thig Regret of a Policy

aper. : . N
pap Under the above model, we are interested in designing
policiesp which maximize the expected number of successful
Il. SYSTEM MODEL & FORMULATION transmissions of the secondary users subject to the non-
interference constraint for the primary users. §éb; u, U, p)
Notation: For any two functionsf(n),g(n), f(n) = be the expected total number of successful transmissions after

O(g(n)) if there exists a constant such thatf(n
)

cg(n) n slots undeV/ number of secondary users and poljcy
for all n > ny for a fixedny € N. Similarly, f(n n))

In the ideal scenario where the availability statisticsare

if there exists a constant such thatf(n) > ¢'g(n all  known a priori and a central agent orthogonally allocates the
n > ng for a fixedng € N, and f(n) = 0(g(n)) = secondary users to tHé-best channels, the expected number
Q(g(n)) and f(n) = O(g(n)). Also, f(n) = o(g(n)) when of successful transmissions afterslots is given by

) = o0

(

F(n)/g(n) = 0 and f(n) = w(g(n)) when f(n)/g(n) — "
asn — 00. * s

We refer to theJ highest entries in a vectgr as thel/-best (s, U)i=n ;M(] ) @
channels and the rest as theworst channels. Let(T'; )
denote the index of th@™ highest entry inu. Alternatively, Where;* is the j"-highest entry inu.
we abbreviatd™*:=¢(T'; ) for ease of notation. With abuse of
notation, letD(uy, u2):=D(B(u1); B(uz)) be the Kullback- zA user refers to a se_condary user unle_ss_oth_ervvise men_tione(_j.
Leibler distance between the Bernoulli distributidhé; ) and When U > C, learning availability statistics is less crucial, since all

channels need to be accessed to avoid collisions. In this case, design of
B(uz2) [23] and letA(1,2):=u1 — po. medium access is more crucial.



Algorithm 1 Single User Policyp'(g(n)) in [10]. The sample-mean based policy in][11, Thm. 1] proposes an

Input: {Xi(n)}iz1. o : Sample-mean availabilities after index for each channéland user; at timen is given by
rounds,g(i; n): statistic based otk ;(n),

o(T;g(n)): index of T highest entry ing(n). G (i ):=Xi 5 (Ti j(n)) + 210gn’ (4)
Init: Sense in each channel onees— C T;,5(n)
Loop:n <= n +1 where T; ;(n) is the number of slots where usgrselects

Curr_Sel < channel corresponding to highest entrygim) channeli for sensing and

for sensing. If free, transmit.
T ;(n)

k=1 %

It is clear thatS*(n; u,U) > S(n; u, U, p) for any policy
p and finiten. We are interested in minimizing thegret in
learning and access, given by

is the sample-mean availability of channghs sensed by user

The statistic in [(4) captures thexploration-exploitation
R(n; u, U, p):=S*(n; u,U) — S(n; u,U, p) > 0. (2) tradeoff between sensing the channel with the best predicted
availability to maximize immediate throughput and sensing
We are interested in minimizing regret under any giye® different channels to obtain improved estimates of their avail-
(0,1)¢ with distinct elements. abilities. The sample-mean term [0 (4) corresponds to exploita-
By incorporating the collision channel model assumptiofion while the other term involvindl; ;(n) corresponds to
with no avoidance mechanisfhsthe expected throughputexploration since it penalizes channels which are not sensed

under policyp is given by often. The normalization of the exploration term witlg 7 in
(@) implies that the term is significant whéh ;(n) is much
S(nimU,p) =Y > n(DEVi(n), smaller thanlogn. On the other hand, if all the channels

are sense®(logn) number of times, the exploration terms
become unimportant in thestatistics of the channels and the
whereV; ;(n) is the number of times im slots where user exploitation term dominates, thereby, favoring sensing of the
j is the sole user to sense chanheHence, the regret ifnl2) channel with the highest sample mean.

i=1 j=1

simplifies as The regret based on the above statistidin (4) is logarithmic
U c U for any finite number of slota but does not have the optimal

R(n:p) = nu(k) — pw(@DE[Vii(n).  (3) scaling constant. The sample-mean based statistid_in [10,

,; ; = ! Example 5.7] leads to the optimal scaling constant for regret

and is given by
IIl. SPECIAL CASESFROM KNOWN RESULTS

lo
9% (i5n):=X (T}, ;(n)) + min ez

—— 1. (5
We recap the bounds for the regret under the special cases 2T; j(n)’ ] ®)

of a S'F‘g'e secor_1dary us¢t = 1) and muIt_|pIe users with In fhis paper, we design policies based on & statistic
centralized learning and access by appealing to the classica

results on the multi-armed bandit process [8]+-[10] since it is simpler to analyze than th€™ statistic.
P - ' We now recap the results which show logarithmic regret in

learning the best channel. In this context, we detinéormly
A. Single Secondary User (U = 1) good policiesp [8] as those with regret

When there is only one secondary user, the problem of R(n; m, U, p) = o(n®), VYa>0,uc(0,1)°. (6)
finding policies with minimum regret reduces to that of a
INCINg policies wi mimu g - Theorem 1 (Logarithmic Regret for U = 1 [10], [[11]):

multi-armed bandit process. Lai and Robbins [8] first analyz forml d ool L h q
schemes for multi-armed bandits with asymptotic logarithm cOr any unitormly good policy satl;fy|ng @)'.t e expecte
spent in any suboptimal chanrief 1* satisfies

regret based on the upper confidence bounds on the unkndiif

channel availabilities. Since then, simpler schemes have been . (1—¢e)logn |
proposed in[[10], [11] which compute a statistic or an index for nlgr;op [Tz’l(n) = D(ui, p1-) "7 _ (7)
each arm (cha.nnel), henceforth referred to asgistatistic, where1* is the channel with the best availability. Hence, the
based only on its sample mean and the number of slots Wh?éﬁret satisfies

the particular arm is sensed. The arm with the highest index IS

selected in each slot in these works. We summarize the policy liminf BB HLA) 3 A(li) )
in Algorithm [ and denote it!(g(n)), whereg(n) is the n—00 logn iel_worstD(Man*)
vector of scores assigned to the channels afteansmission L .
slots g The regret under thg°"" statistic in [5) achieves the above
' bound.
4The effect of employing CSMA-CA is not considered here although it R(n; p, 1, pl (gg?F’T))

. . . A(1%,4)
can be shown that it reduces the regret and hence, the bounds we derive are  lim = —— (9
applicable. n—00 logn e D (s, p1+)



Algorithm 2 Centralized Learning Policy“=" in [9].

Input: X" := U, UZ, X7, : Channel availability aften
slots, g(n): statistic based oi’™,

o(T;g(n)): index of T™ highest entry ing(n).

Init: Sense in each channel onees+— C

Loop:n+n+1

Curr_Sel < channels withU-best entries ing(n). If free,
transmit.

The regret undeg"=" statistic in [3#4) satisfies

« ~ | 8logn
R(n; p, 1, p" (g)™)) < Z A(17,4) [A(ng)?
i#£1* ’

+14+—

3

B. Centralized Learning & Access for Multiple Users

We now consider multiple secondary users under centraliz%f?c’f:
access policies where there is joint learning and access by
central agent on behalf of all thé users. Here, to minimize

the sum regret, the centralized policy allocatesithasers to
orthogonal channels to avoid collisions. L&' (X'*), with
Xk o= U, U, Xk

YN

on the sensing variables of all the users. The policy under

A. Preliminaries: Bounds on Regret

We first provide simple bounds on the regret[ih (3) for any
distributed learning and access poligy

Proposition 1 (Lower and Upper Bounds on Regret): The
regret under any distributed poligysatisfies

U
R(nip) 2y > AU OE[T(n)],

j=1ieU-worst

(14)

U
R(n;p) <p(17)| D> Y E[Ty;(n)] +E[M(n)]|, (15)

j=1ieU-worst

where T; ;(n) is the number of slots where usgrselects

channeli for sensing,M (n) is the number of collisions faced

by the users in th&-best channels in slots,A(s, j) = (i) —

wu(y) andp(1*) is the highest mean availability.

See AppendixB. O

dn the subsequent sections, we propose distributed learning

and access policies and provide regret guarantees for the

policies using the upper bound ih{15). The lower bound in
) can be used to derive lower bound on regret for any

denote a centralized policy based'Niformly-good policy.

The first term in [Ib) represents the lost transmission

centralized learning is a simple generalization of the singl@PPOrtunities due to selection dy-worst channels (with
user policy and is given in Algorithll 2. We now recap thipwer mean availabilities), while the second term represents

results of [9].

Theorem 2 (Regret Under Centralized Policy p°= [9]):
For any uniformly good centralized policy®™™ satisfying
(6), the expected times spent inlaworst channef satisfies

U (I—-¢€)logn
lim P | S Th,(n) > o LB | 1,
P12 Tisln) D(pi, o)

Jj=1

(10)

whereU* is the channel with th&™ best availability. Hence,
the regret satisfies

Rn;p, 1, %)
logn

lim inf M
n—o0 D(us, pr-)

(11)

>

i€ U-worst

performance loss due to collisions among the users in the
U-best channels. The first term ih {15) decouples among the
different users and can be analyzed solely through the marginal
distributions of theg-statistics at the users. This in turn, can
be analyzed by manipulating the classical results on multi-
armed bandits [10]/[11]. On the other hand, the second term
in (I3), involving collisions in thel/-best channels, requires
the joint distribution of they-statistics at different users which
are correlated variables. This is intractable to analyze directly
and we develop techniques to bound this term.

B. p™° . Distributed Learning and Access
We present thep™"° policy in Algorithm [3. Before de-

The scheme in Algorithrill2 based @ff™ achieves the above scribing this policy, we make some simple observations. If

bound.
. R(n;p, 1,0 (g) A(U™, i)
T e T 2 Dy @2

1€ U-worst

The scheme in Algorithrh]2 based on th¥" satisfies for
anyn > 0,

R(n7 u’ U’ pCENT(gMEAN))

U UAm*,z'
<y Ay

m=14ieU-worstk=1

8logn 2
1+ 21,
[A(m*,z'>2+ " 3}

Proof: See Appendik’A.

IV. MAIN RESULTS

each user implemented the single-user policy in Algorifhm 1,
then it would result in collisions, since all the users target
the best channel. When there are multiple users and there
is no direct communication among them, the users need to
randomize channel access in order to avoid collisions. At
the same time, accessing tlieworst channels needs to be
avoided since they contribute to regret. Hence, users can avoid
collisions by randomizing access over thebest channels,
based on their estimates of the channel ranks. However, if the
users randomize in every slot, there is a finite probability of
collisions in every slot and this results in a linear growth of
regret with the number of time slots. Hence, the users need
to converge to a collision-free configuration to ensure that the
regret is logarithmic.

In Algorithm [3, there is adaptive randomization based
on feedback regarding the previous transmission. Each user

Armed with the classical results on multi-armed bandits, wandomizesonly if there is a collision in the previous slot;

now design distributed learning and allocation policies.

otherwise, the previously generated random rank for the user



Algorithm 3 Policy p™*°(U, C, g;(n)) for each userj under probability) is uniform. For a state, where certain channels

U users,C channels and statistig; (n). have exactly one user, there are only transitions to states which
Input: {X;,(n)}i—1..c : Sample-mean availabilities atconsist of at least one user in that channel and the transition
user j after n rounds, g;(i;n): statistic based onX; ;(n), probabilities are uniform. Let' (U, U) denote the maximum

o(T;g;j(n)): index of T™ highest entry ing;(n). time to absorption in the above Markov chain starting from
¢;(i;n): indicator of collision at: slot at channel any initial distribution. We have the following result

Init: Sense in each channel onees C, Curr_Rank « 1, ~ Lemma 2 (# of Collisions Under Perfect Knowledge):

¢ (i3m) 0 The expected number of collisions undegt"® scheme in
Loop:n < n +1 Algorithm [3, assuming that each user has perfect knowledge
if ¢;(Curr_Sel;n —1) =1 then of the mean channel availabilitigs, is given by

Draw a newCurr_Rank ~ Unif(U) E[M(n); 55U, C, )] < UE[Y(U,T)]

end if

Select channel for sensing. If free, transmit. <U [(2[] B 1) —1} . a7)
Curr_Sel <— o(Curr_Rank; g;(n)). U

If collision ¢;(Curr_Sel;m) < 1, Else0. Proof: See AppendixC. O

The above result states that there is at most a finite number
of expected collisions, bounded BYE[Y (U, U)] under perfect
is retained. The estimation for the channel ranks is throughowledge ofyu. In contrast, recall from the previous section,

the g-statistic, on lines similar to the single-user case. that there are no collisions under perfect knowledgeuof
in the presence of pre-allocated ranks. Herl¢&[Y' (U, U)]

C. Regret Bounds under p™ represents a bound on the additional regret due to the lack
of direct communication among the users to negotiate their

It is easy to see that the®™"" policy ensures that the K
users are allocated orthogonally to thebest channels as ranxs.

the number of transmission slots goes to infinity. The regretwefuseil_the resu(ljt Ofd_L?'En?dzl for gnalyf2|tr;1g theknum—
bounds onp™™ are however not immediately clear and w er_lob_(lz_?_ ISions ur; I?r '_S _rf' ute heamlt';gtoth € unkhown
provide guarantees below. availabilities p as follows: if we show that the users are

We first provide a logarithmic upper bolhdn the number able to learn the correct order of the different channels with
of slots spent by each user in abiyworst channel. Hence theonIy logarithmic regret then only an additional finite expected
first term in the bound on regret iA(15) is also Iogarith’mic.num_ber O_f collisions occur before reaching an orthogonal

Lemma 1 (Time Spent in U-worst Channels): Under  the configuration.

: : : Define T"(n; p**"°) as the number of slots where any one
RAND scheme in Algorithni 3, the total time spent by any user, o i
r g P yany of the top¥ estimated ranks of the channels at some user is

j=1,...,U, in anyi € U-worst channel is given b . .
J R yr € ¢ y wrong underp™° policy. Below we prove that its expected
8logn 2 value is logarithmic in the number of transmissions.
E[T;(n)] < Z [A(i )2 +1+ 3 (16) Lemma 3 (Wrong Order of g-statistics): Under the pfAv°
k=1 ’

scheme in Algorithni 13,
Proof: ~ The proof is on lines similar to the proof for

L U c 9
Theorent®, given in Append[x]A. O E[T" (n; )] < UZ Z { 8logn 1t % (18)

We now focus on analyzing the number of collisialgn) =5 A(a*,b*)
in the U-best channels. We first give a result on the expected )
number of collisions in the ideal scenario where each user Hi§0f:  See AppendiXD. 0
perfect knowledge of the channel availability statistiesin We now provide an upper bound on the number of collisions

this case, the users attempt to reach an orthogonal (collisidd{") i? the U-best channels by incorporating the above result

free) configuration by uniformly randomizing over thebest N E[T"(n)], the result on the average number of siB{s; ;|

channels. spent in theU-worst channels in Lemma 1 and the average
The stochastic process in this case is a finite-state Markgymber of collisionsUE[Y (U, U)] under perfect knowledge

chain. A state in this Markov chain corresponds to a coff # in Lemmal2. . o

figuration of U number of (identical) users it/ number of _ Theorem 3 (Logarithmic Number of Collisions Under p™*):

channels. The number of states in the Markov chain is tH&€ exRBEDcted nu;rE]Akther of collisions in tlié-best channels

number ofcompositions of U, given by (*%;") [24, Thm. 5.1]. underp™*(U.C. g ) scheme satisfies

The orthogonal configuration co_rrgsponds to the absorbing E[M(n)] < UE[Y(U,U)] + I)E[T;(n)]. (19)

state. For any other state, consisting of more than one user

or no user in any of the channels, the transition probabilityence, from[(16),[(18) and (17} (n) = O(log n).

to any state of the Markov chain (including self transitiofroof:  See AppendiXE. O

Hence, there are only logarithmic number of expected

°Note that the bound ofi[T; ;(n)] in (I8) holds for useyj even if the collisions before the users settle in the orthogonal channels.

other users are using a policy other thaff\P. But on the other hand, to L . .

analyze the number of collisionB[M (n)] in (I9), we need every user to Combining Fh's result with LemmE_] 1 that the .num_ber of

implementpRAND. slots spent in thd/-worst channels is also logarithmic, we



immediately have one of the main results of this paper that tA¢gorithm 4 Policy p='(n, C, g;(m), &) for each usey under
sum regret under distributed learning and access is logarithmicfransmission slots (horizon lengthy; channels, statistic
Theorem 4 (Logarithmic Regret Under p™): The policy &;(m) and threshold functions.
P (U, C, g"™™) in Algorithm[3 has©(logn) regret. 1) Input: {X; ;(n)}i=1...c : Sample-mean availabilities
Proof:  Substituting [[IP) and (16) in_(15). ml at userj, g;(i;n): statistic based oiX; ;(n),
Hence, we prove that distributed learning and channel access ¢ (T’; g;(n)): index of ™ highest entry ing;(n).
among multiple secondary users is possible with logarithmic  ¢;(i;n): indicator of collision at:" slot at channel
regret without any explicit communication among the users.  [: current estimate of the number of users.
This implies that the number of lost opportunities for success-  n: horizon (total number of slots for transmission)
ful transmissions at all secondary users is only logarithmic in 2) Init: Sense each channel onee« C, Curr_Rank
the number of transmissions, which is negligible when there 1, 7«1, ¢i(im)«0foralli=1,...,C
are large number of transmissions. 3) Loop:m < m + 1, stop whenm = n.
We have so far focused on designing schemes that maximize) If ¢;(Curr_Sel;m — 1) =1 then
system or social throughput. We now briefly discuss the  Draw a newCurr_Rank ~ Unif(U). end if

fairness for an individual user undgf*"°. Since p**"° does Select channel for sensing. If free, transmit.
not distinguish any of the users, in the sense that each user Curr_Sel « o(Curr_Rank;g;(m))
has equal probability of “settling” down in one of tHé- 5) ¢;(Curr_Sel;m) « 1 if collision, 0 0.w.

best channels while experiencing only logarithmic regret in 6) If S U ¢ (olk: o Q) > .5 then
doing so. Simulations in Sectidn_VII (in Fig.4) demonstrate 0 %51;1'“:5%-(2)( ;g-é)(’?):)’ ‘1l) %nva :))1 .
this phenomenon. end if VA ) oo O s, M.

V. DISTRIBUTED LEARNING AND ACCESS UNDER
UNKNOWN NUMBER OF USERS users accumulate, and can be used as a test for incrementing

We have so far assumed that the number of secondé%y o o
users is known, and is required for the implementation of P€note the collision count used by policy as
the p™"° policy. In practice, this entails initial announcement m ok
from each of the secondary users to indicate their presence in Py ;(m) = Z Z (o (b;gj(m)); a). (20)
the cognitive network. However, in a truly distributed setting a=1b=1

without any information exchange among the users, such @fich, is the total number of collisions experienced by ugser
announcement may not be possible. so far (till the m® transmission slot) in the top; channels,
In this section, we consider the scenario, where the NUMRGEa e the ranks of the channels are estimated usingthe

of usersU is unknown (but fixed throughout the duration ofavistics. The collision count is tested against a threshold
transmissions and/ < C, the number of channels). In thIS§(n. ﬁj) which is a function of the horizon Ien@hand

case, the policy needs to estimate the number of secondahy,ant estimatd’

. : ” _ ;. When the threshold is exceed id, is
users in the system, in addition to learning the channglemented, and the collision samples collected so far are

availability statistics and designing channel access rules baggd. . qeq (by setting them to zero) (lifle 6 in AlgoritAin 4)
on collision feedback. Note that if the policy assumed the '

worst-case scenario thét = C, then the regret grows linearly
since U-worst channels are selected a large number of timBs Regret Bounds under p='
for sensing. We analyze regret bounds under $fé" policy, where the
regret is defined in{3). Let the maximum threshold function
for the number of consecutive collisions ungé&¥ policy be
denoted by
We now propose a policy™" in Algorithm[4. This policy & (n;U):= max £(nk). (21)
incorporates two functions in each transmission slot, viz., k=1,..U
execution of thep™"" policy in Algorithm[3, based on the e prove that they™" policy hasO(¢*(n; U)) regret when
current estimate of the number of uséfs and updating of ¢+(p. 7) = w(logn), and wheren is the number of transmis-
the estimatd/ based on the number of collisions experienceggn siots.
by the user. The proof for the regret bound undgf" policy consists
The updating is based on the idea that if there is undeff two main parts: we prove bounds on regret conditioned on
estimation ofU at all the users{(; < U at all the users), the event that none of the users over-estinfat&Second, we

collisions necessarily build up and the collision count servegow that the probability of over-estimation at any of the users

as a criterion for incrementing. This is because after a long

learning period, the users learn the true ranks of the channels,®in this section, we assume that the users are aware of the horizon length

and target the same set of channels. However, when theré@ fer transmission. Note that this is not a limitation and can be extended
. . to gase of unknown horizon length as follows: implement the algorithm by

under-estimation, the number of users exceeds the numbey; g horizon lengths tow, 2no., 4ng . . . for a fixedno € N and discarding

channels targeted by the users. Hence, collisions among #k@nates from previous stages.

A. Description of p=' Policy



goes to zero asymptotically. Combined together, we obtain the —+ oo, when the thresholdg(n; ﬁ) for testing against
regret bound fop=T policy. the collision count are chosen appropriately (see [ihe 6 in

Note that in order to have small regret, it is crucial thahlgorithm[4). Trivially, we can set(n;1) = 1 since a single
none of the users over-estimdfe This is because when therecollision is enough to indicate that there is more than one user.
is over-estimation, there is a finite probability of selectingor any otherk > 1, we choose function§ satisfying
the U-worst channels even upon learning the true ranks of
the channels. Note that regret is incurred whenever a U-worst £(n;k) =w(logn), Vk>1. (25)
channel is selected since under perfect knowledge this chawl
would not be selected. Hence, under over-estimation, the reghrgﬁe
grows linearly in the number of transmissions.

In a nutshell, under thg=" policy, the decision to increment
the estimatd/ reduces to a hypothesis-testing problem wit
hypothesedi,: number of users is less than or equal to th¥ ) )
current estimate and{,: number of users is greater than L€MM@ S (Time spent with wrong estimates): The
the current estimate. In order to have a sub-linear regréfPectéd number of slots where any of the tpestimated
the false-alarm probability (decidingf; under?#,) needs to ran_kg of the channels at any user is wrong une€f policy
decay asymptotically. This is ensured by selecting :';1ppropri§t'ét'5f'eS

prove that the above condition ensures that over-estimation
S not occur.

Recall thatl” (n; p") is the number of slots where any one
f the topy/ estimated ranks of the channels at some user is
rong underp®T policy. We show thafE[T”(n)] is O(log n).

thresholdsé(n) to test against the collision counts obtained v ¢ 8logn 2

through feedback. ET'(n)] <UY Y {m +l+ 5| (26)
Conditional Regret: We now give the result for the first a=1b=a+1 “

part. Define the “good event(n; U) that none of the users Proof:  The proof is on the lines of Lemnia 3 -

_ 7 EST
over-estimated/ undery™" as Recall the definition ofY'(U,U) in the previous section,

v as the maximum time to absorption starting from any initial
C(n; U)::{ﬂ Uj(n) <U}. (22)  distribution of the finite-state Markov chain, where the states
J=1 correspond to different user configurations and the absorbing
The regret conditioned onC(n;U), denoted by state corresponds to the collision-free configuration. We now

R(n; u, U, p=")|C(n; U), is given by generalize the definition t& (U, k), as the time to absorption
U c U in a new Markov chain, where the state space is the set of
n E*) — DEV; 5 (n)[C(n: U], configurations ofU users ink channels, and the transition
;u( ) ;;M( JEWV: g (m)[Cn: ) probabilities are defined on similar lines. Note thétU, k)

. . ,. is almost-surely finite whe > U and co otherwise (since
whereV; ;(n) is the number of times that usgris the sole yere is no absorbing state in the latter case).

user of channel. Similarly, we have conditional expectations \ye now bound the maximum value of the collision count

Ef F;[Tﬁj(””f(”; U)] and]\;)[f thec ngr[r}berv\?f collisi(;ns i?;" . ®y,;(m) underp®™" policy in (20) usingZ”(m), the total time

est channels, given bg[ (n)[C(n; U)]. We now show that gpent with wrong channel estimates, @A, k), the time to

the regret conditioned ofi(n; U) is O(max(£*(n; U),logn)). o . st .
Lemma 4: (Conditional Regret): When all thel' secondary absorption in the Markov chain. LeK denote the stochastic

users implemenp=" policy, we have for alli € U-worst °rder for two random variables [25]. .
channel and each usgr=1,...,U, Proposition 2: The maximum collision count ir_{20) over

all users under the®" policy satisfies

U
8logn 2
E[T; ; < —— + 1+ —. 23 st
Tig(m)[Cim)] < ; {A(i,k*)Q A 3 (@3) _I{laXU@k,j(m) < (T'(m)+1)Y(U,k), YmeN. (27)
- Jj=1,...,
The conditional expectation on number of collisiab&n) in Proof:  The proof is on the lines of Theorefd 3. See Ap-
the U-best channel satisfies pendixG. .
U - . .
. We now prove that the probability of over-estimation goes
E[M()|C(nU)] U &nik) < U (m:U)- - (24) 14 zer0 asymptotically.
k=1

Lemma 6 (No Over-estimation Under p="): For threshold

From [13), we haveé?(n)|C(n; U) is O(max(£* (n; U),logn))  functions satisfying[(25), the eve@tn;U) in (22) satisfies

for anyn € N.

Proof: See AppendixdF. O lim P[C(n;U)] =1, (28)
Probability of Over-estimation: We now prove that none e

of the users over-estimateg/ under p5T policy, i.e., the and hence, none of the users over-estimdfesinder p='

probability of the evenC(n;U) in (22) approaches one aspolicy.

Proof: See AppendikH. O

"Note that pFST policy automatically ensures that all the users do not \nie now give the main result of this section th&t™ has
under-estimate/, since it incrementd/ based on collision estimate. This

implies that the probability of the event that all the users under-estifiate slightly more than Iogarithmic rggret asymptOtica”y and this
goes to zero asymptotically. depends on the threshold functigh(n; U) in (21).



Theorem 5 (Asymptotic Regret Under p="): With threshold ~ Theorem 7 (Varying Number of Users): When the number
functions ¢ satisfying conditions in [(25), the policy of channelsC is fixed and the number of usets < C is

p='(n, C,gj(m),§) in Algorithm[4 satisfies varied, the sum regret under centralized learning and access
R(n: s, U, o= P in (I2) decreases d$ increases while the upper bounds
limsup ——"——~* < oo. (29) on the sum regret undef“** in (I5) monotonically increases
oo £ U) with U.
Proof: From Lemmd¥ and Lemnid 6. O Proof: The proof involves analysis of (12) and@ {15). To

Hence, the regret under the proposet™ policy is prove that the sum regret under centralized learning and access
O(&*(n;U)) under fully decentralized setting without thein (I2) decreases with the number of usérsit suffices to
knowledge of number of users whefi(n;U) = w(logn). show that fori € U-worst channel,

Hence, O(f(n)logn) regret is achievable for all functions AU*,9)

f(n) = oo asn — oo. The question of whether logarithmic —
- : S D(pi, pu~)

regret is possible under unknown number of users is of interest. _

Note the difference betweepts™ policy in Algorithm [4 decreases a§’ increases. Note that(U*) and D(ui, pu+)
under unknown number of users W-WWND pohcy with known decrease ay increases. Hence, it suffices to show that
number of users in Algorithni]3. The regret undef’ is w(U*)

O(f(n)logn) for any f_unctlon f(n) = w(1), while it is D (s, piu-)
O(logn) underp™*"° policy. Hence, we are able to quantify .

. decreases with/.
the degradation of performance when the number of user
unknown.

This is true since its derivative with respect
00 is negative.

For the upper bound on regret ungét** in (I5), whenU
is increased, the number éf-worst channels decreases and
hence, the first term if_(15) decreases. However, the second
A. Lower Bound For Distributed Learning & access term consisting of collisiond/(n) increases to a far greater

We have so far designed distributed learning and accé@gent. _ .
policies with provable bounds on regret. We now discuss theNOte that the above results is for the upper bound on regret
relative performance of these policies, compared to the optinydlder thep™*> policy and not the regret itself. Simulations in

learning and access policies. This is accomplished by notig§CtiorLVIl reveal that the actual regret also increases With

derived in [4] for a general class of uniformly-good time9of U-worst channels decreases. Hence, the regret decreases,

division policies. We restate the result below. since there are less number of possibilities of making bad
Theorem 6 (Lower Bound [4]): For any uniformly good decisions. However, for distributed schemes although this

distributed learning and access polipy the sum regret in effect exists, it is far outweighed by the increase in regret

VI. LOWERBOUND & EFFECT OFNUMBER OF USERS

@) satisfies due to the increase in collisions among ffieusers.
v In contrast, the distributed lower bound in30) displays
R(n;u,U AU*,i i i i it fai
i inf (n; 1, U, p) > Z Z (U*,4) . (30) ano_malous behavior wittU since it fayls to account for
n—sco logn D(p;y =) collisions among the users. Here, &sincreases there are

iceU- tj=1 i i
retmworsty two competing effects: a decrease in regret due to decrease

The lower bound derived in[9] for centralized learning anth the number ofi/-worst channels and an increase in regret

access holds for distributed learning and access considegig@ to increase in the number of users visiting théseorst
here. But a better lower bound is obtained above by consighannels.

ering the distributed nature of learning. The lower bound for
distributed policies is worse than the bound for the centralized VIl. NUMERICAL RESULTS

policies in [11). This is because each userindependentlylearnwe present simulations that vary the schemes and the

the channel availabilitieg: in a distributed policy, Whereasnumber of users and channels to verify the performance of
sensing decisions from all the users are used for learning i@h% algorithms detailed earlier. We considér 9 channels
centralized policy. (or a subset of them when the number of channels is varying)

holur disgibutgd Iearning_and agcef]s poliey™ n;atchhes with probabilities of availability characterized by Bernoulli
the ower bound on r_egret '@5) in the orc_(daasg n) but the distributions with evenly spaced parameters ranging ffom
scaling factors are different. It is not clear if the regret Iowet[) 0.9

bound in [3D) can be achieved by any policy under no explicit _ _ o
information exchange and is a topic for future investigation. Comparison of Different Schemes: Fig[2a compares the
regret under the centralized and random allocation schemes in

a scenario withlJ = 4 cognitive users vying for access to the

C = 9 channels. The theoretical lower bound for the regret
We have so far analyzed the sum regret under our policiesthe centralized case from Theoréd 2 and the distributed

under a fixed number of usets We now analyze the behaviorcase from Theorerl 6 are also plotted. The upper bounds on

of regret growth ag/ increases while keeping the number ofhe random allocation scheme from Theoillem 4 is not plotted

channelsC' > U fixed. here, since the bounds are loose especially as the number of

B. Behavior with Number of Users
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U = 4 users,C = 9 channels. U = 4 users,C = 9 channels. U = 4 users,C = 9 channels p**"® policy.

Fig. 2. Simulation Results. Probability of Availabilitg = [0.1,0.2,...,0.9].

400, 100 400,
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(a) Normalized regre 0“2 vs. U users. (b) Normalized regre 0“2 vs. C channels. (c) Normalized regre Ogg vs. U users.
C = 9 channelsyn = 2500 slots. U = 2 users,n = 2500 slots. User-channel rati(% = 0.5, n = 2500 slots.

Fig. 3. Simulation Results. Probability of Availabilig = [0.1,0.2,...,0.9].

usersU increases. Finding tight upper bounds is a subject of Fig[3B evaluates the performance of the different algorithms
future study. as the number of channelsis varied while fixing the number

As expected, centralized allocation has the least regrét.usersU. The probability of availability of each additional
Another important observation is the gap between the low@annel is set higher than those already present. Here, the
bounds on the regret and the actual regret in both the di§gret monotonically increases witt in all cases. When the
tributed and the centralized cases. In the centralized scenaf¢Mmber of channels increases along with the quality of the
this is simply due to using thg"=" statistic in [3%) instead channels, the regret increases as a result of an increase in the
of the optimalg®" statistic in [5). However, in the distributegnumber ofU-worst channels as well as the increasing gap in
case, there is an additional gap since we do not account fflity between thé/-best andJ-worst channels.
collisions among the users. Hence, the schemes under comlso, the situation where the rati@ is fixed to be0.5
sideration are)(logn) and achieve order optimality althoughand both the number of users and channels along with their
they are not optimal in the scaling constant. quality increase is considered in Fig.3c. As the number of
) ) . users increases the regret increases as the number of channels
Performance with Varying U and C Fig[3a explores the - ang their quality are both increasing. Once again, this is

impact of inc_reasing the number of secc_)n_dary u_@ém_the in agreement with theory as the numberléfworst channels
regret experienced by the different policies while fixing thg, . cocas a& andC increase while keepin@ fixed.
number of channel€’. With increasind’/, the regret decreases

for the centralized schemes and increases for the distributedCollisions and Learning: Fig[2d verifies the logarithmic
schemes, as predicted in Theorem 7. The monotonic increas¢ure of the number collisions under the random allocation
of regret under random allocatiopt*™® is a result of the schemep™"°. Additionally, we also plot the number of col-
increase in the collisions d$ increases. While the monotoniclisions underp™"* in the ideal scenario when the channel
decreasing behavior in the centralized case is because asatralability statisticg. are known to see the effect of learning
number of users increases, the numbetUefvorst channels on the number of collisions. The low value of the number
decreases resulting in lower regret. Also, the lower boumd collisions obtained under known channel parameters in
for the distributed case if_(BO) initially increases and thethe simulations is in agreement with theoretical predictions,
decreases wittU This is because a¥& increases there areanalyzed asVE[Y(U,U)| in Lemmal2. As the number of
two competing effects: decrease in regret due to decreasesliots n increases, the gap between the number of collisions
number of U-worst channels and increase in regret due tmder the known and unknown parameters increases since the
increase in number of users visiting thdseworst channels. former converges to a finite constant while the latter grows as
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300 the system. Moreover, our model ignores dynamic traffic at
the secondary nodes and extension to a queueing-theoretic
formulation is desirable.
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O(logn). The logarithmic behavior of the cumulative number
of collisions can be inferred from Figl2a. However, the curve
in Fig[Z8 for the unknown parameter case appears linear inA. Proof of Theorem([2
due to the small value of. The result in [(IB) involves extending the results [ofl[11,

Difference between ¢ and ¢"*: Since the statistig" Thm. 1]. DefineT;(n):= Z?:l T:,j(n) as the number of times
used in the schemes in this paper differs from the optimaichannel is sensed im rounds for all users. We will show
statisticg®" in (5), a simulation is done to compare the perfor‘lhat
mance of the schemes under both the statistics. As expectedEﬁ_( ) < Z [ 8logn

APPENDIX

71-2
+14—1|, Vi¢eU-worst

Fig[Zh, the optimal scheme has better performance. However, * T hest A(k*,4)? 3
the use ofg"™" enables us to provide finite-time bounds, as (31)
described earlier. We have

Fairness. One of the important features ¢f*"° is that P[Tx. in i in n® slof = Plg(U*;n) < g(i:n)]

it does not favor any one user over another. Each user has

an equal chance of settling down in any one of thdest =PLAGE 1) N (g(UTn) < g(i5n))]

channels. Figl4 evaluates the fairness characteristig&"$t + P[A(isn) N (g(U"n) < g(i3n))],
The simulation assume§ = 4 cognitive users vying for \ynere
access toC = 9 channels. The graph depicts which user A(iyn):= U (g(k;n) < g(isn))

asymptotically gets the best channel ou®0 runs of the kel best

random allocation scheme. As can be seen, each user gaﬁwe event that at least one of thebest channels hag-

approximately the same frequency of being allotted the bes?étistic less thar. Hence, from union bound we have

channel indicating that the random allocation scheme is indee
fair. PlAG;n) < Y Plg(kin) < g(isn)].

keU-best
We have forC > U,

PLA%(i;m) N (g(U;n) < g(i5n))] =0,

VIIl. CONCLUSION

In this paper, we proposed novel policies for distributed
learning of channel availability statistics and channel accedence,
of multiple secondary users in a cognitive network. The first R .
policy assumed that the number of secondary users in the P[Tx. in ¢ in n® round < Z Ply(ksn) < g(isn)]-
network is known, while the second policy removed this . we-best
requirement. We provide provable guarantees for our polici€® the lines of [[1L, Thm. 1], we havevk,i
in terms of sum regret. Combined with the lower bound of IS U-besti is U-worst
regret for any uniformly-good learning and access policy, our n
first policy achieves order-optimal regret while our second ZI[Q(k;l) <g()] < INCOE +1+ 3
policy is also nearly order optimal. Our analysis in this paper =1 ’
provides insights on incorporating learning and distributddence, we have (31). For the bound on regret, we can break
medium access control in a practical cognitive network. 2 in () into two terms

The results of this paper open up an interesting array of 1 U
problems for future investigation. Our assumptions of an i.i.d. R(n;u, U, p*"") = Z [U Z A(l*,i)}E[Ti(n)]
model for primary user transmissions and perfect sensing at icU-worst ~ I=1
the secondary users need to be relaxed. Our policy allows for 1 Y
an unknown but fixed number of secondary users, and it is of + > T oA i)}E[Ti(n)]-
interest to incorporate users dynamically entering and leaving i€U-best ~ =1
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For the second term, we have wherep is the probability of having an orthogonal configura-
tion in a slot. This is in fact the reciprocal of the number of

U
Z [% ZA(Z*,@')]E[E-(TL)] compositions of U [24, Thm. 5.1], given by
1€U-best =1 -1
<2U — 1) (35)
\ 1 . P=\ v '
<ETm)] Y [5Y a0 =0, S\ v |
i€U-best ~ =1 The above expression is nothing but the reciprocal of number
whereT*(n):= max Tj(n). Hence, we have the boundd] of waysU identical balls (users) can be placedlindifferent
" ieU-pest ' bins (channels): there atd/ — 1 possible positions to form
U partitions of the balls.
B. Proof of Proposition [I] Now for the random allocation scheme without the genie,
For convenience, lefl}(n) := ZU , T;.5(n), Vi(n) := any user not experiencing collision doest draw a new
’ 7 . Jj= 2, ’ 7 .

27:1 Vi (n). Note thatzil Ty(n) = nU, since each user variable from UnifU). Hence, the number of possible config-

selects one channel for sensing in each slot and theré aré/rations in any slot is lower than under genie-aided scheme.
users. From[{3) Since there is only one configuration satisfying orthogorfality

the probability of orthogonality increases in the absence of the

U c ; :
» . genie and is at leadt (B5). Hence, the number of slots to reach
R(n) :”Z“(’ )~ Z“(Z)E[Vi(")]’ orthogonality without the genie is at moBt134). Since in any
N slot, at mostU collisions occur,[(117) holds. 0
< Y (i) (n—EVi(n))
leU;beSt D. Proof of Lemma[3
<p(1)(nU = Y E[Vi(n))) (32) o
i€U-best Let cp,m:= Tm _
—u(1*)(E[M(n)] + Z E[T;(n)]), (33) Case 1: ConsiderU = C = 2 first. Let
iey-worst At D):={gy™" (1"t = 1) < gj™" (275t = 1), Tj(t = 1) > 1}.

where Eqn[(32) uses the fact tiafn) < n since total number On lines of [T1, Thm. 1]
of sole occupancies in slots of channel is at mostn, and o Y
Eqn.[3B) uses the fact thal (n) = X"y pesl (1) = Vi(n)). 1 -
. i <
For the lower bound, since each user selects one chanjr;e(ln) si+ ;I[A(t’l)]’
for sensing in each sIotEiczlzz.J:lﬂ-,j(n) = nU. Now =

o) t
Tivj(n) > Vl](n) <l+ Z Z I (Xl*,j(h) +cin < XQ*J(’ITL) + Ct,m) .
] U U C© t=1 m+h=l
R(n; .U, p) > SN AU HEIT;(n)]] The above event is implied by
k=1 j=1 i=1 — —
U ! X+ j(h) +een < Xox j(R) + ¢t htm
>y A(U*,)E[T; (). sincec,m > cunm-

Jj=1i€U-worst The above event implies at least one of the following events
0 and hence, we can use the union bound.

Xl*,j(h) < p1x — C¢n,
Xo« j(m) > pia~ + ¢t him,
p1e < pi2x + 2C htm-

C. Proof of Lemma[Z

Although, we could directly compute the time to absorption
of the Markov chain, we give a simple bouidY (U, U)] by
considering an i.i.d process over the same state space. We teéram the Chernoff-Hoeffding bound,
this process as a genie-aided modification of random allocation
scheme, since this can be realized as follows: in each slot, a ~
genie checks if any collision occurred, in which case, a new P[Xa j > pior + Cnpm] <77
_random variable is Qrgwn from Unli) by _aII users. This is 54 the event that, -
in contrast to the original random allocation scheme where a
new random variable is drawn only when the particular user 8logt
experiences a collision. Note that féf = 2 users, the two h+ {A% 2*—‘
scenarios coincide. . ’

For the genie-aided scheme, the expected number of slotStce ot i
hit orthogonality is just the mean of the geometric distribution op—4 —

>3y

P[X1+;(t) < pae — cpp) <74

< po= + 2¢¢ pym implies that

7.{.2
& 1— P t=1 m=1 3

> k(1 —p)fp="—= <o, (34)
k=1 p

8since all users are identical for this analysis.
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, G. Proof of Proposition

81 2 i i -
E[T'(n;U = C = 2)] < ogn 1 T Define the good event as all users having correctlfop

AL . 3 order, given by
. U
Case 2: Formin(U, C) > 2, we have G(n):= ﬂ{Top-U entries ofg;(n) are same as ip}.
n Jj=1

v c
T'(n) <UD Y > Iy (a*;m) < g§™"(b*;m)),  The number of slots under the bad event is

a=1b=a+1m=1

c _ U
wherea* and b* represent channels witti" and o™ highest Z [[§5(m)] = T"(n),
availabilities. On lines of the result fa¥ = C' = 2, we can m=t
show that by definition of 7'(n). In each slot, either a good or a bad

) event occurs. Ley be the total number of collisions ik-best

n
8logn ™ channels between two bad events, i.e., under a run of good
EI[gVEAN a*;m < MEAN b*;m < 1+ . y L€,
mz::l g5 ) <9 =< A2 3 events. In this case, all the users have the correcttopnks

of channels and hence,

Hence, [(IB) holds. O o
VS(n) < UTU, k),
E. Proof of Theorem[3 The number of collisions under the bad event is at ridst).

Hence, [(2)) holds. O
Define the good event as all users having correctlfop-

order of theg-statistics, given by H. Proof of Lemma§

v . _ We are interested in
G(n):= ﬂ {Top-U entries ofg;(n) are same as im}. N
j=1 Plce(n); U] = PIUL, U5'(n) > U,
. n U
The number of slots under the bad event is —P| U U{(I)U,j(m) > E(n; U],
n m=1j=1
> I[S¢(m)] = T'(n), = P[ max_Du;(n) > & U)),
m=1 Jj=1,...,

gvhere® is given by [20). Fot/ = 1, we haveP[C¢(n); U] =0

by definition of T’(n). In each slot, either a good or a bad” Al
since no collisions occur.

event occurs. Lety be the total number of collisions iB/- g X "
best channels between two bad events, i.e., under a run op'sing (27) in Propositiodl2,
good events. In this case, all the users have the corredt/ top- k . ]

ranks of channels and hence, P[?jf( ®r,(n) > &(n; K)]

< PERY(U, k)T (n) +1) > &(n; k)]
<PE(T'(n)+1) > 2——=]+P[Y(U,k) > a,]

Qp

E[S(n)] < UE[Y(U,U)] < oo,

where E[Y(U,U)] is given by [1¥). Hence, each transition ,
from the bad to the good state results in at MéB{Y (U, U)] < kan(E[T"(n)] + 1) FP[Y(U, k) > an] (36)
expected number of collisions in thé-best channels. The B §(n; k) ’ ’
expected number of collisions under the bad event is at M@ging Markov inequality. By choosing,, = w(1), the second
UE[T"(n)]. Hence, [(IB) holds. U term in [38), viz,,P[Y(U,k) > a,] — 0 asn — oo, for
k > U. For the first term, from (26) in Lemnid &[T’ (n)] =
O(logn). Hence, by choosingy, = o(¢*(n; k)/logn), the
F. Proof of Lemma 4 first term decays to zero. Singé(n;U) = w(logn), we can
Under C(n; U), a U-worst channel is sensed only if it isCh0oose, satisfying both the conditions. By letting= U in
mistaken to be &-best channel. Hence, on lines of Lemima 1(38), we haveP[C¢(n); U] — 0 asn — oo, and [28) holds(]

E[T; ;(n)[C(n; U)] = O(logn), Vie U-worstj=1,...,U. REFERENCES
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